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III.4 Molecular Partition Functions 

 

In the following, the important example of an ideal-gas system is 

considered again. The system consists of N identical but independ-

ent, non-interacting particles, each particle has a number of inde-

pendent degrees of freedom like uncoupled motion along the spa-

tial coordinates x, y, and z. In both respects, the microstate energies 

can be expressed as sum over individual single-particle energies and 

individual single degrees of freedom. Then, as shown in previous 

sections, the canonical partition function in Boltzmann statistics for 

the N-particle system can be written as a product of partition func-

tions, each for one particle and for one individual degree of free-

dom.  

 

One expects that the calculation of the single-particle partition 

function for translational motion, qtrans, should be the easiest of all. 

However, this degree of freedom is associated with a continuous 

energy spectrum, which makes the treatment more difficult. Fortu-

nately, one can use a trick: One imagines the particles enclosed in a 

box with discrete energies given by Equ.III.55. After necessary ma-

nipulations have been made in this frame work, and quantities of 

interest X(a) have been calculated as functions of the size a of the 

box, one performs the transition to an infinitely large box (a  ), 

where the spectrum becomes indeed continuous. The appropriate 

quantities for this limit are then 

 

 

For the particles in a finite cubical box of side length a, the trans-

lational partition function reads 

X X a
a

=
→

lim ( ) (III.82) 
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where the particle-in-a-box energy eigen values are given by 
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Performing the transition to the infinite box, a → ∞, the summation 

over discrete quantum numbers ni can be replaced by an integral 

over continuous quantum numbers n: 
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Since the volume is given by V = a3, the translational partition 

function can also be written as   

where the thermal wave length therm is defined as 

 

 

 
(III.86)  

(III.87) 
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This wavelength is similar in magnitude to the deBroglie wave-

length of the gas atom. 

One can now use this single-particle partition function to calcu-

late expectation values for the macro-system, for example the aver-

age kinetic energy © trans per particle. Using the equivalent of 

Equ. III.52, one obtains 

Collecting terms,  

       trans kT=
3

2          (III.89) 

In other words, one regains the Equipartition Law, according to 

which in thermal equilibrium, every degree of freedom has an en-

ergy equal to  = ½ kT. This behavior can be traced back to the 

quadratic dependence of the energy on the variable (or quantum 

number) in the partition integral (cf. Equ. III.85). Hence, one can 

say more specifically that, in thermal equilibrium, any degree of 

freedom, whose energy (kinetic or potential) depends 
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quadratically on the (momentum or position) variable, has an av-

erage thermal energy of u = ½ kT. One also concludes that k kB

.  

At room temperature, this characteristic energy is of the order of 

Another term in the partition function of Equ. III.43 is the elec-

tronic partition function. Expressed in terms of energy levels and 

level degeneracies, this partition function reads  

At normal (room) temperatures, corresponding to energies of 

the order of kT = 25 meV, which are smaller than electronic ener-

gies ( 10 eV) by a factor of 10 3, the electronic partition function 

represents merely the constant factor 0, the degeneracy of the 

electronic ground state. Typical values for alkali metal atoms are   

         qelectronic = 0 = 2         (III.92) 

Similar, even stronger arguments can be made for the nuclear par-

tition function qnuclear. Nuclear energy level spacings are of the order 

of (10 5- 10 6) eV. Hence, at room temperatures, the nuclear partition 

function can be well approximated by the (spin-Inucl) degeneracy 

of the nuclear ground state: 

qnuclear ~ 0(Inucl) = 2·Inucl + 1        (III.93) 

(IV.111)(III.91)  
 

(III.90)  

q e eelectronic

i
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All terms combined give the total N-particle partition function 

of mono-atomic gases in the Boltzmann limit of high temperature  

 

Using further Stirling’s Formula, N! ≈ (N/e)N, which is valid for 

large numbers N  1, this function simplifies further to 

 (III.94) 
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In practice, only the translational part of this partition function 

is important, because the level degeneracies remain constant in 

the typical processes considered.  

From this partition function, it is straightforward to regain the av-

erage energy per particle, essentially in translational motion, 

                




trans kT
T

nT kT=  =2

3

2
3

2
    (III.89a) 

and the contribution of thermal translational motion to the heat ca-

pacity per particle, 

   c
C

N
kV

trans V

trans

= =
3

2
      (III.95) 

Both results are familiar already from the treatment of the kinetic 

theory of gases. 

The rotation in space is an important degree of freedom for many 

complex molecules. The rotational degree of freedom can be excited 

in collisions between molecules in thermal motion and assumes, 

therefore, energies typical of the overall temperature of the system. 

Thus it contributes to the capacity of the system to carry energy, its 
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heat capacity has a part dependent on the characteristics of rota-

tional degree of particular molecule of interest.  

The rotational canonical partition function qrot for a single par-

ticle can be easily evaluated in the limit of classical Boltzmann sta-

tistics, valid for relatively high temperatures: 

      
q e erot

j

j j

rotj
rot

j
rot

j
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= =
−

=
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−

 
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


0

 d i        (III.96) 

Here, the rotational partition function has been expressed in both 

alternatives, as a sum over single-particle microstates j (left) and a 

sum over single-particle microstate energy levels  j

rot
(right). It is in 

fact more practical to use the formulation on the r.h.s. of Equ. III.96, 

because one knows the level degeneracy for rotational levels explic-

itly. One can choose the index j to represent the quantal spin angu-

lar momentum  

   J j j= +( )1           (III.97)  

of the molecule. For a generic molecule with no particular sym-

metry, e.g., CO, there are energy levels for every j= 0,1,2,....  

For a molecule of a certain rotational symmetry or symmetry 

number , there are fewer levels. For example, the linear symmetric 

molecule O=C=O has  = 2 and a 180 o= 360 o/ rotational sym-

metry, rather than the regular 360 o symmetry. For reasons explained 
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by quantum mechanics, this symmetric molecule has only even an-

gular-momentum states, i.e., for j = 0, 2, 4, .....  

j = 2j + 1         (III.98) 

magnetic substates for the rotational level number j, associated with 

the magnetic quantum numbers - j ≤  m ≤+j, which all have the same 

rotational energy  j

rot
in the absence of external magnetic fields. 

This rotational energy of the molecule is related to its moment of 

inertia  by 

   j

rot j j
=

+( )1

2

2


         (III.99) 

Inserting level degeneracy and energies into Equ. III.85, one ob-

tains for the single-particle rotational partition function 
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      (III.100) 

Given the moment of inertia  of the molecule, one can evaluate 

the rotational partition function. It is convenient to combine the 
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rotational characteristics of the molecule in one parameter, the "ro-

tational temperature" Trot (or rot) 

T
k

rot =
2

2 
      (III.101) 

such that the rotational partition function can be expressed as 

      q j erot
j j

T

T

j

rot

= + 
− +

=



 ( )
( )

2 1
1

0
      (III.102) 

One has to realize that the moment of inertia  depends on the 

distribution of the atomic masses of the molecule with respect to 

the axis of rotation. It is, therefore, in general different for differ-

ent rotational axes, unless the molecule has certain symmetry.  

For relatively small molecules such from CO2 to CH3Cl, the mag-

nitude of the rotational temperature is typical from a fraction of one 

degree to several tens of K. Hence, at room temperature,  Trot ⊥ T. 
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Therefore, the partition sum in Equ. III. 102 is very well approxi-

mated by a partition integral 

          q dj j e dx e
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   (III.103) 

Making the transition from the exact partition sum to an unre-

stricted integral over all levels requires a correction for the double-

counting of levels for symmetric molecules. Therefore, the factor 

1/ has been introduced above. In the further evaluation of the inte-

gral, the variable transform x = j(j+1) with d{j(j+1)}/dx = 2j+1 has 

been utilized. 

As an example, the figure below shows a comparison of the CO2 

rotational partition sum (points) with the corresponding partition in-

tegral (line) [MATHCAD_252\Rot_PF_CO2.MCD]. There is obvi-

ously very good agreement between the two different 
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representations already at temperatures somewhat lower than room 

temperature.  

Of practical interest in spectroscopic studies is often the popula-

tion Pj of molecular rotational levels at the temperature of the sam-

ple. These populations are just the terms in the partition sum Equ. 

III.102, normalized by division by the total sum, 

Some calculations (MATHCAD_252\Rot_PF_CO2.MCD) are 

shown below for CO2 and two different temperatures. 

Basically, this function has a triangular shape, folded with a 

Gaussian. For relatively small angular momenta of the particle, the 

exponential in Equ. III.104 approaches unity, and the spin 

 (III.104) 
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degeneracy determines the population, i.e., Pj  (2j+1). For large 

angular momenta, on the other hand, the Gaussian dominates and 

the population has approximately the form 

 

P jj j −exp 2 22n s       (III.105) 

 where  j

2
  is a constant, the so-called spin cutoff parameter 

       

With increasing temperature, the peak of the spin distribution, the 

most probable spin, shifts to higher spin values. Simultaneously, the 

tail of the distribution reaches to higher spins, and the decay be-

comes more gradual.  

 

The dependence of the populations of energy levels on parame-

ters such as the moment of inertia  of the molecules presents an 

interesting spectroscopic tool. It turns out that even fairly small mol-

ecules with small  values, such as HCl, are dominantly in j  0 

states already at room temperature. 

 

Knowing the rotational partition function, for example, in its clas-

sical form of Equ. III.103, one can calculate the average energy of 

rotational motion of a molecule, 

 

    




rot rotkT
T

nq kT= =2                (III.107)  

The result is quite satisfactory in view of the Principle of Equi-

partition of the Energy mentioned earlier. According to this princi-

ple, every degree of freedom in thermal equilibrium carries an 

 (III.106) 
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average energy of ©E = (1/2) kT. In rotations about a fixed axis, 

there are two degree of freedom, hence ©rot = 2 (1/2) kT = kT. 

Again, this result can be traced back to the quadratic dependence 

of the energy on the associated variable. Compare Equ. III.102 with 

Equ. III.85, with the variables j and n, respectively. 

 

From the average rotational energy per particle, one can calculate 

the contribution to the heat capacity per particle due to the rotational 

degree of freedom. Similar to Equ. III.95, one calculates for the ro-

tational heat capacity per particle, 

 

       c
C

N T
kV

rot V

rot
rot= = =




      (III.108) 

 

In the classical limit of high temperatures or small  values, 

where the partition sums can be approximated by integrals, the 

heat capacity per particle and degree of freedom approaches a 

constant value of cV = (1/2)k. This remains true even for molecules 

that are strictly non-ideal in that they have an internal structure. 

 

Other degrees of freedom can be treated in much the same man-

ner. Consider, for example, molecules with vibrational degrees of 

freedom, e.g., with oscillation in the direction x. If the vibration is 

harmonic, i.e., occurs in a quadratic potential, the quantum-mechan-

ical model of the harmonic oscillator applies. Here, the molecular 

energy levels can be numbered by the quantum number n = 0,1,..... 

The level spacing is equidistant, as determined by the fundamental 

(circular) frequency . This frequency depends on the inertia M of 

the oscillator and the linear-force constant defined by Hooke's force 

law F(x)= c (x - x0) as 
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     = c M/        (III.109) 

The single-particle energy levels for such a harmonic oscillator 

are sums of kinetic and potential energy. They can be expressed as 

             Ev =  (v +1/2)       v = 0,1,2,...               (III.110) 

 

Here, the ground-state energy E0 = (1/2) is also known as zero-

point fluctuation.  

 

With this knowledge, one can construct the vibrational partition 

function: 
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/b g
      (III.111) 

 

For the evaluation of this partition function, it is useful to rewrite 

Equ. III.111 as 
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which can also be written as 
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For high temperatures, T   , the hyperbolical-sine function 

becomes linear in its argument. Hence, 

 

(III.112) 
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       q
kT T

T

vib

T

vib

→
⎯ →⎯⎯ =

       (III.114) 

 

where Tvib = k is the vibrational temperature, a quantity charac-

teristic of the molecular oscillator. 

 

For typical diatomic molecules such as H2 or HCl, the vibrational 

temperatures are of the order of several 103K. Hence, the classical 

limit of very large temperatures T  Tvib is difficult to attain for 

vibrational motion. Essentially, at temperatures typical for most ex-

periments, vibrational motion has to be described with the quan-

tum-mechanical formalism. 

 

As an example, the figure compares the quantal vibrational parti-

tion function (Equ. III.113) for the diatomic molecule CO with its 

classical approximation (Equ. III.114). The vibrational temperature 

for CO is Tvib = 3122 K (MATHCAD_252\Vib_PF_CO.MCD). 
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As can be seen from this figure, the absolute values of the vibra-

tional partition function are relatively small, of the order of 1 or less, 

for the temperature range displayed. At low temperatures, the quan-

tal partition function is noticeably non-linear. It is better ap-

proached by the classical partition function only at extremely high 

temperatures, where presumably molecules can no longer exist in 

stable, bound states. 

 

In spite of these difficulties, it is straightforward to calculate sim-

ple quantities like the average vibrational energy and the associated 

heat capacity: 
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(III.115) 
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This formula has been evaluated and plotted below for one mole 

of CO { MATHCAD_252\Vib_PF_CO.MCD}. One observes that 

at low temperatures, the average vibrational energy is small and re-

mains constant. This is the region in temperature, where there are 

only zero-point vibrations of the oscillator, and no excited state is 

populated.  
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The plot below shows the populations of the first few vibrational 

states of CO, for T = 300 K (histogram) and T = 600 K (solid dots) 

{MATHCAD_252\Vib_PF_CO.MCD}. It is impressive, how fast 

the population decreases with increasing principal quantum number. 

For example, P(1)/P(0) ~ 10-5 for T = 300 K. Even for T =600 K, 

the population of the first excited state ( = 1) of CO reaches barely 

1% of that of the ground state ( = 0) of that molecule. 

 

It is also easy to see that in the classical limit of T → ∞,  or  → 

0, the partition function becomes proportional to the temperature: 

 

 

 

 






vib

T

kT
kT

→
⎯ →⎯⎯  =



2

2
(III.116) 
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To appreciate this result in the light of the Equipartition Princi-

ple, one has to remember that the vibrational energy vib is a sum of 

kinetic and potential energies. On average, there is an equal amount 

in kinetic and potential energy for a harmonic oscillator. This ex-

plains why the average vibrational energy is twice the elementary 

thermal energy (1/2)kT per degree of freedom. 

 

However, as shown above, at ordinary temperatures, the thermal 

energy in vibrational motion is very small, much smaller than the 

energy in translational or rotational motion. The molecules are typ-

ically not found in a wide range of vibrational states but are mostly 

gathered in the vibrational ground state. The reason for this is, of 

course, the low density of states, or the low entropy associated with 
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vibrational degrees of freedom. The figure above illustrates the var-

iation of the molar vibrational entropy calculated from Equ. III.70  

 

      ( )
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(III.117) 

 

and the vibrational partition function of Equ. III.113 using again 

C:\WINMCAD\Programs\Vib_PF_CO.MCD. One observes from 

this figure that, even for thousands of degrees of Kelvin, the molar 

entropy S(T) is still in the range of only a few J/K. 

 

This behavior is echoed by the vibrational contribution to the heat 

capacity. To obtain the heat capacity associated with vibrational mo-

tion, one simply differentiates the average energy of Equ. III.103 

with respect to T and obtains 
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and finally 
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Since for small values of the argument, sinh(x) ≈ x, one obtains 

immediately, cV
vib ≈ k in the classical limit of large temperatures, as 

for the other degrees of freedom considered. 
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The figure below shows the heat capacity calculated for CO. Its 

T dependence illustrates the behavior famous from introductory dis-

cussions of quantum mechanics. This is in fact the characteristic T 

dependence of the heat capacity for solid materials. Solids form lat-

tices of atoms or molecules that are held in their lattice positions by 

the interaction forces. These particles have no freedom of transla-

tional or rotational motion. Hence, vibrational motion is the most 

important degree of freedom of solids at low to moderately high 

temperatures. 

 

The small values of the heat capacity at such temperatures indi-

cate the inability of solids to store large amounts of heat energy or 

entropy. What happens, when one forces large amounts of heat into 

a piece of solid material, e.g., by immersing it into a heat bath of 

very high temperature or by irradiating it with intense high-energy 
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radiation, is all too familiar: Like forcing too large an amount of 

water into a pipe system makes it burst, forcing too large a current 

of entropy into a solid destroys the lattice structure. The solid melts. 

A certain structure (phase) of material can carry entropy only to a 

maximum amount, after which its structure changes in a "phase 

transition".  

 

Of course, in the above example, the gas CO was considered, 

which has translational degrees of freedom, in addition to rotational 

and vibrational ones. The translational degrees of freedom have the 

largest heat capacity. They dominate the average thermodynamic 

behavior of gases. In particular, translational degree of freedom can 

store the largest amounts of entropy and heat energy.  

 


